Sunday, 9 September 2012

GATE2012ECE(4)

GATE 2012 ECE paper fully solved.Step by step, detailed solutions are given.Corrections and suggestions are appreciated. 

For reference material, quote the question and send a mail to arunsblog4ece@gmail.com.


18)  The signal m(t) as shown is applied both to a phase modulator (with  k as the phase constant) and a frequency modulator (with  k as the frequency 
 constant) having the same carrier frequency.



The ratio kp / kf  (in rad/Hz) for the same maximum phase deviation is

(A) 8π         (B) 4π        (C) 2π        (D) π


Solution
                                       
$$\text{Phase Modulation equation is , } s(t)=Acos(2πf_{c}t+k_{p}m(t))$$
                                           
  $$\text{Phase Deviation of PM }= k_{p}m(t)$$
                                                
$$\text{Frequency Modulation equation is, }s(t)=Acos(2πf_{c}t+2πk_{f}\int_{0}^{t}m(t)dt)$$
  $$\text{Phase Deviation of FM }= 2πk_{f}\int_{0}^{t}m(t)dt)$$

Max. phase deviation occurs at m(t) maximum value

Max. Phase Deviation of PM } =  2* kp

Integral of square wave is triangular wave, with peak value in this case as +4 

Max. Phase Deviation of FM =  4*2π kf

Now given condition is, Max. Phase Deviation of PM=Max. Phase Deviation of FM
                                           2 kp = 8π kf
     
                                         kp / kf = 8π/2 =

-------------------------------------------------------------------------------------------------------------------

19)  In the sum of products function f (X, Y, Z) = (2, 3, 4, 5) , the prime implicants are
      _       _                                            _     _ _    _
(A) X Y, X Y                                   (B) X Y, X Y Z, X Y Z
     _    _   _          _                             _ _        _        _ _     _
(C) X Y Z, X Y Z, X Y                       (D) X Y Z, X Y Z, X Y Z, X Y Z


Solution 

X    Y    Z   minterm
0    0    0       0
0    0    1       1
0    1    0       2
0    1    1       3
1    0    0       4
1    0    1       5
1    1    0       6
1    1    1       7

          
f(X,Y,Z) = (X’ Y Z’ + X’ Y Z + X Y’ Z’ + X Y’ Z)

f(X,Y,Z) = (X’ Y Z’ + X’ Y Z) + (X Y’ Z’ + X Y’ Z)

f(X,Y,Z) = X’ Y (Z’+Z) + X Y’ (Z’+Z)

f(X,Y,Z) = X’ Y + X Y’    
These cannot be further reduced and hence are prime implicants

 --------------------------------------------------------------------------


20)  The source of a silicon (ni = 1010  per cm3 ) n-channel MOS transistor has an area of 1 sq μm and a depth of 1 μm. If the dopant density in the source is 1019 /cm3 , the number of holes in the source region with the above volume is approximately

(A) 107                                                (B) 100                        (C) 10             (D) 0

Solution 
ni2 = np

ni2 = ND * p   (For an n-type semiconductor with ND donor dopant atoms)

p = ni2 / ND
     
    = (1010 per cm3)2  / (1019 per cm3)
   
    = 10 per cm3

Total holes,  p = 10 per cm3 * volume

                        = 10 * Area * depth

                        = 10 * (1*10-4)2 * (1*10-4)       (Now all units are in cm3)
                         
                        = 10-11

                           = 0 (Approx.)

-----------------------------------------------------------------------------------

21)  Let y[n] denote the convolution of h[n] and g[n], where h[n] = (1/2)^n u[n] and g[n] is a causal
sequence. If y[0] = 1 and y[1] = 1/2, then g[1] equals

(A) 0             (B) 1/2            (C) 1          (D) 3/2


Solution

h[n] = (1/2)n u[n] is drawn below

 

g[n] is causal, therefore it is right sided with no values at negative time

It might be like this a, b, c are unknowns, they can take any values .



Now convolution is  y[n] = -∞ to ∞ h[k] g[n-k]
Or in simple words we have to time reverse one of the signal, multiply overlap of signals and then sum it.

Here assume we are time reversing g[n]

For n=0

                                 h[k]

 

                                           
                                g[0-k]



y[0] = -∞ to ∞ h[k] g[-k] = 1

y[0] = 1 * a = 1

or a = 1  => g[0] = 1

For n=1 

                                  h[k]

                                           
                                  g[1-k]

y[1] = -∞ to ∞ h[k] g[1-k] = ½     g[n ] is shifted one instant towards right

y[1] = (a * ½) + (b * 1) =1/2

we already got a=1 , so above condition is possible only if b=0  => g[1] = 0

---------------------------------------------------------------------------

22)   A BPSK scheme operating over an AWGN channel with noise power spectral density of N0/2, uses equiprobable signals s1(t) = √(2E/T )sinωct and  s2(t) = - √(2E/T )sinωct over the symbol interval (0, T). If the local oscillator in a coherent receiver is ahead in phase by 45° with respect to the received signal, the probability of error in the resulting system is

(A)  Q(√(2E/N0))                    (B)  Q(√(E/N0))                                                 (C)  Q(√E/2N0))                    (D)  Q(√(E/4N0))

 Solution   

This can be consider as non-coherent decoding of BPSK.
The probability of error is given by,
Pb=Q { √(2E/N0 ) sinθ}, where θ is the phase shift of local oscillator

Pb=Q { √(2E/N0 ) sin45}

Pb=Q { √(2E/N0 ) (1/√2}

Pb=Q { √(E/N0)}


------------------------------------------------------------------------------------------------------------


The transfer function of a compensator is given as

                            Gc(s) = (s+a) / (s+b)


23)  Gc(s) is a lead compensator if

(A) a =1, b = 2                         (B) a = 3, b = 2

(C) a = –3, b = –1                     (D) a = 3, b = 1


Solution

 Gc(s) is a lead compensator when b > a

So answer is (A)

24)  The phase of the above lead compensator is maximum at

(A) √2 rad/s     (B)  √3 rad/s     (C) √6 rad/s     (D) 1/ √3 rad/s


Solution
ωmax = √(ωz ωp)

        = √(1 * 2))
       

        = √2

 

 

No comments:

Post a Comment